変異株シナリオ

藤井大輔(東京大学) 仲田泰祐(東京大学)

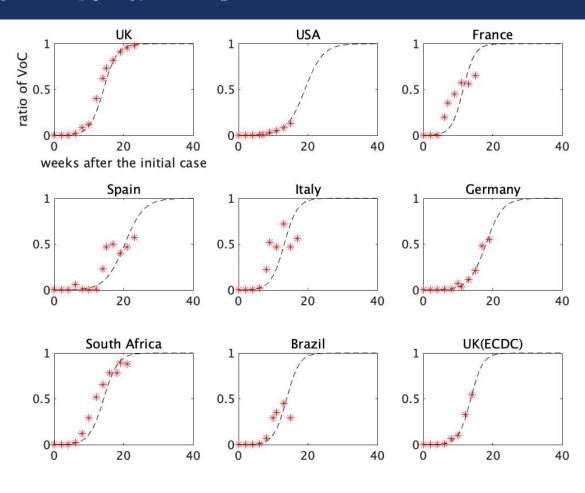
2021年3月30日

クレジット

- この資料作成の際には、みずほ総合研究所の服部直樹さんに数々のご教示を頂きました。また、服部さんには日本の変異株データも共有して頂きました。感謝を申し上げます。
 - もちろん分析内容の責任は、藤井と仲田にあります
- 経済以外の分野の方々からも数々のご教示を頂きました。感謝を申し上げます。
 - もちろん分析内容の責任は、藤井と仲田にあります

変異株感染の推移

(注) VOC-202012/01、501Y.V2、501Y.V3の合計。除く空港検疫。 3月5日以前は国立感染症研究所の確定検査ベース、以降は自治体スクリーニングベース。 (出所) 厚生労働省


服部直樹氏(みずほ総合研究所)作成

変異株感染の推移

		1/5	1/12	1/19	1/26	2/2	2/9	2/16	2/23	3/2	3/9	3/16	3/23
北海道・	北海道	0	0	0	0	0	0	0	0	0	0	13	13
	青森	0	0	0	0	0	0	0	0	0	0	0	C
	岩手	0	0	0	0	0	0	0	0	0	0	0	C
	宮城	0	0	0	0	0	0	0	0	0	0	0	C
東北	秋田	0	0	0	0	0	0	0	0	0	0	0	C
	山形	0	0	0	0	0	0	0	0	0	0	0	C
	福島	0	0	0	0	0	1	4	4	5	5	5	5
関東	茨城	0	0	0	0	0	1	1	1	1	1	1	1
	栃木	0	0	0	0	0	1	1	1	1	1	1	2
	群馬	0	0	0	0	0	1	1	2	2	3	3	3
	埼玉	0	0	0	0	9	26	37	38	38	41	57	58
	千葉	0	0	0	0	0	0	0	0	0	1	1	20
	東京	3	6	7	10	12	12	13	14	14	14	14	18
	神奈川	0	0	0	0	0	5	5	8	9	22	28	30
中部	新潟	0	0	0	0	0	1	17	29	29	32	32	32
	富山	0	0	0	0	0	0	0	0	0	0	0	C
	石川	0	0	0	0	0	0	0	0	0	1	1	1
	福井	0	0	0	0	0	0	0	0	0	0	0	C
	山梨	0	0	0	0	0	0	1	2	2	2	2	2
	長野	0	0	0	0	0	1	1	1	1	1	1	1
	岐阜	0	0	0	0	0	0	0	0	0	4	4	ç
	静岡	0	0	3	4	4	7	7	7	7	7	7	17
	愛知	0	0	0	0	0	0	0	0	0	0	0	C
	三重	0	0	0	0	0	0	0	0	0	0	0	C
	滋賀	0	0	0	0	0	0	2	2	2	2	2	2
近畿	京都	0	0	0	0	0	0	1	3	3	19	24	24
	大阪	0	0	0	0	0	0	0	3	9	62	72	105
	兵庫	0	1	1	1	1	6	14	15	36	38	94	161
	奈良	0	0	0	0	0	0	0	0	0	0	0	C
	和歌山	0	0	0	0	0	0	0	0	0	0	0	C

服部直樹氏(みずほ総合研究所)作成

変異株感染の推移:海外

ロジスティック回帰モデル

- 変異株割合の推移をロジスティック回帰モデルで推定
- - p が変異株の割合、α が現在の変異株の割合に対応、β が変異株の蔓延スピード、X が週
- ロジスティックモデルも疫学モデルと同様に指数関数的な性質
 - 現在の変異株割合が高いと急速に蔓延
 - 広がる時は一気に広がり、その後拡大ペースが収束

二つの変異株シナリオ:東京

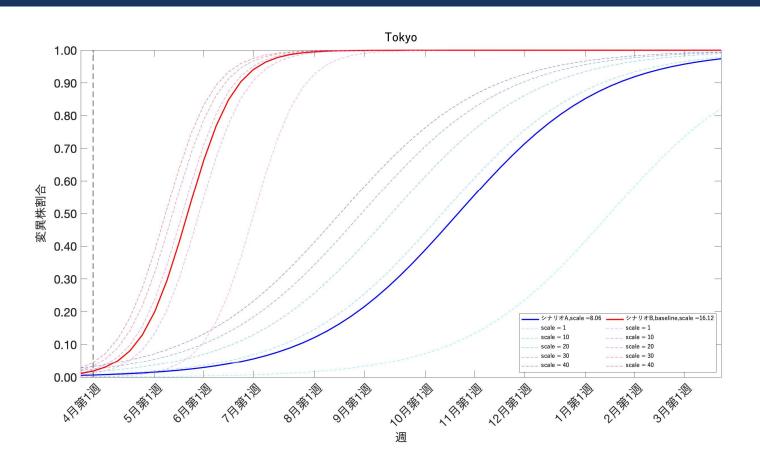
変異株シナリオ(A)

- 現在、変異株割合0.55% (=0.25*1/0.0310*0.0685%= 0.25*[1/最近の検査率]*[直近3週間の変異株割合])
- Logistic回帰パラメター(β):0.17(アメリカのデータと整合的)
- 変異株の感染力:通常の1.5倍

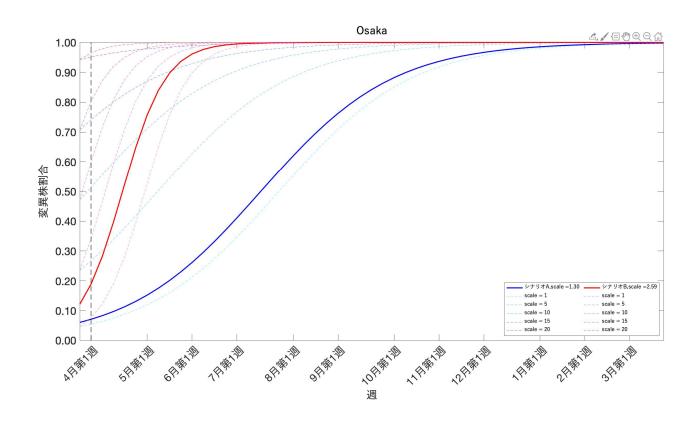
変異株シナリオ(B)

- 現在、変異株割合 | . | % (=0.5/0.0310*0.0685%= 0.5* [1/最近の検査率]*[直近3週間の変異株割合])
- Logistic回帰パラメター (β): 0.52(イギリスのデータと整合的)
- 変異株の感染力:通常の1.5倍

二つの変異株シナリオ:大阪

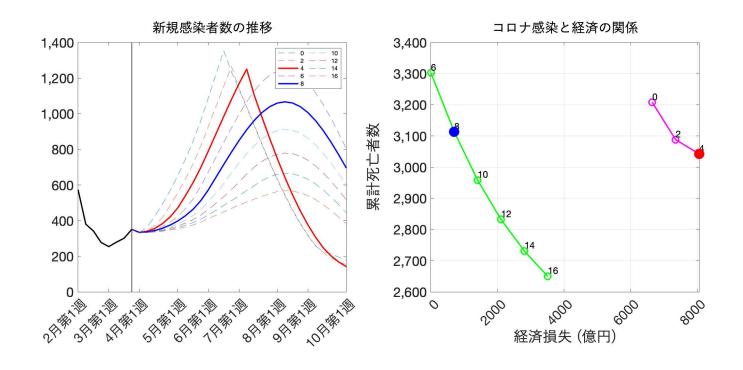

変異株シナリオ(A)

- 現在の変異株割合6.12% (=0.25*1/0.193*4.72%= 0.25*[1/最近の検査率]*[直近3週間の変異株割合])
- Logistic回帰パラメター(β):0.17(アメリカのデータと整合的)
- 変異株の感染力:通常の1.5倍

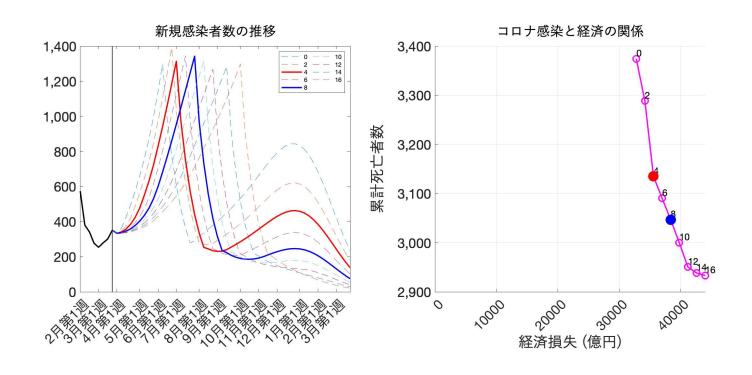

変異株シナリオ(B)

- 現在の変異株割合 I 2.2%(=0.5/0.193*4.72%= 0.5*[1/最近の検査率]*[直近3週間の変異株割合])
- Logistic回帰パラメター (β): 0.52(イギリスのデータと整合的)
- 変異株の感染力:通常の1.5倍

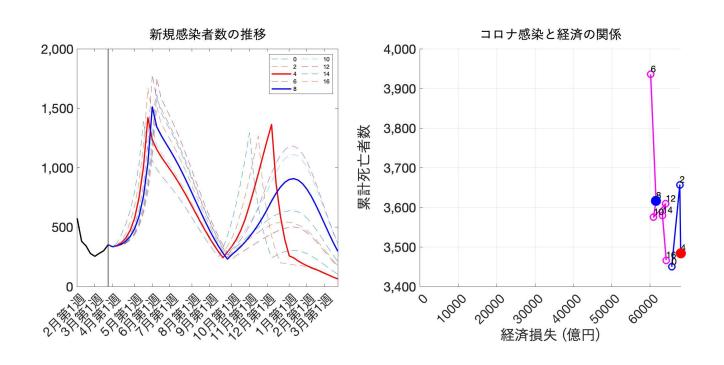
二つの変異株シナリオ:東京



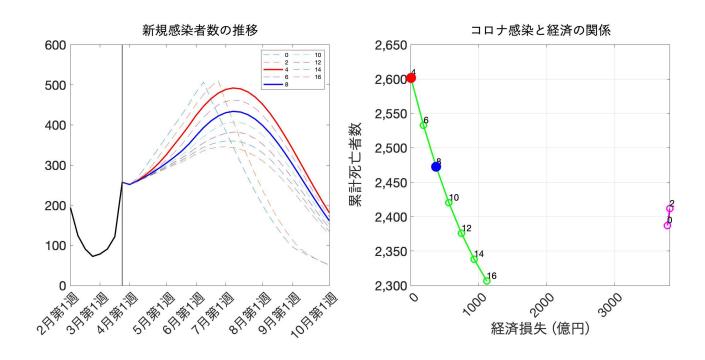
二つの変異株シナリオ:大阪



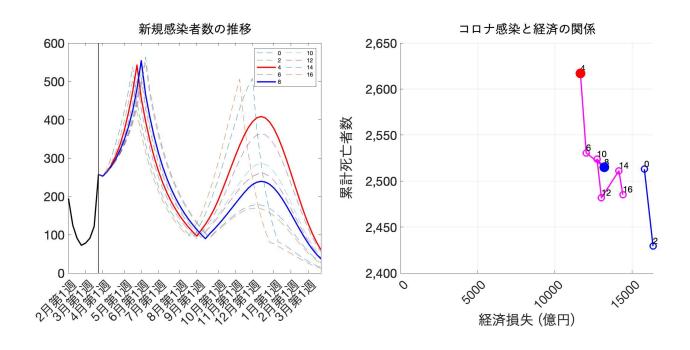
東京


東京:基本シナリオ

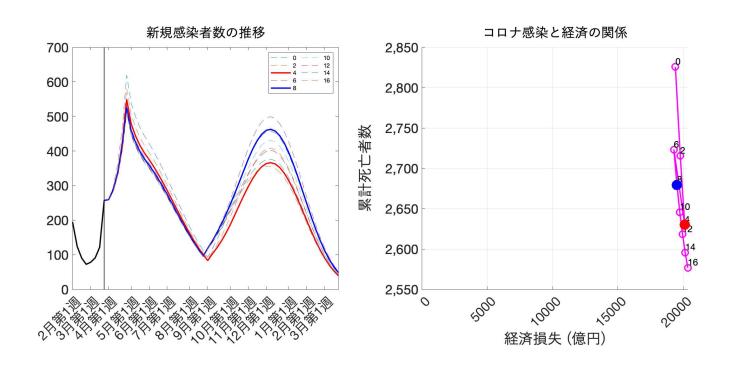
東京:変異株シナリオ(A)



東京:変異株シナリオ(B)



大阪


大阪:基本シナリオ

大阪:変異株シナリオ(A)

大阪:変異株シナリオ(B)

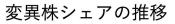
モデルで考慮されていない要素

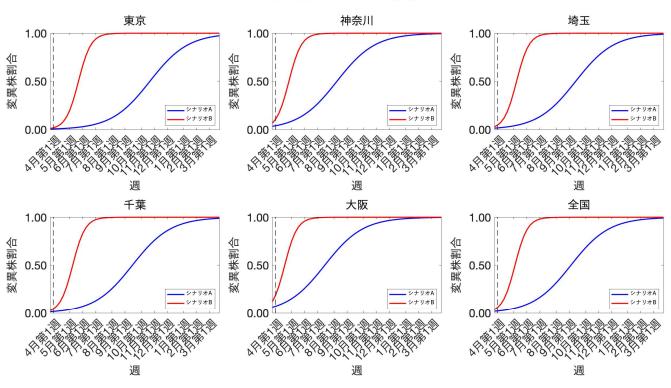
- 見通しを(さらに)悪くする要素
 - ワクチン接種ペースの遅れ
- 見通しを良くする要素
 - ワクチン接種ペースの早まり
 - ワクチン接種 I 本目の効果
 - モデルではワクチンは2本打たないと全く効果なし
 - 経済活動をあまり落とさずに感染抑制できる可能性
 - モデルでは2020年の経済活動と感染の関係を元に予測(2021年1-3月のGDP公表は5月中旬)

「宣言解除後の開放感・自粛疲れ」シナリオとの比較

- 変異株リスク
 - 東京ではここ3ー4週間に感染率の大幅上昇を招く可能性は低い
 - 感染率の大幅上昇を招くとしたら、おそらく1か月以上先
 - 一旦大幅上昇したら、感染率はその後高いレベルで推移
- ■「宣言解除後の開放感・自粛疲れ」リスク
 - 感染率の上昇が今週始まる
 - 感染率上昇は一時的

- 変異株シナリオでは今後の見通しが大きく悪化
 - 感染者数・死亡者数の見通しの悪化
 - 経済損失の大幅な増加
 - 経済損失:基本シナリオ << シナリオA << シナリオB
 - 何故?:変異株が蔓延している場合には、緊急事態宣言中に経済活動をかなり大きく 抑えないと感染減少にはつながらないから


- 地域間での大きな異質性
 - 特に、関西での変異株リスク >> 関東での変異株リスク
 - 県境を越えた人の動きを推奨すべきではない
 - Go to トラベル政策には(非常に)大きなリスク


■毎週火曜日分析を更新

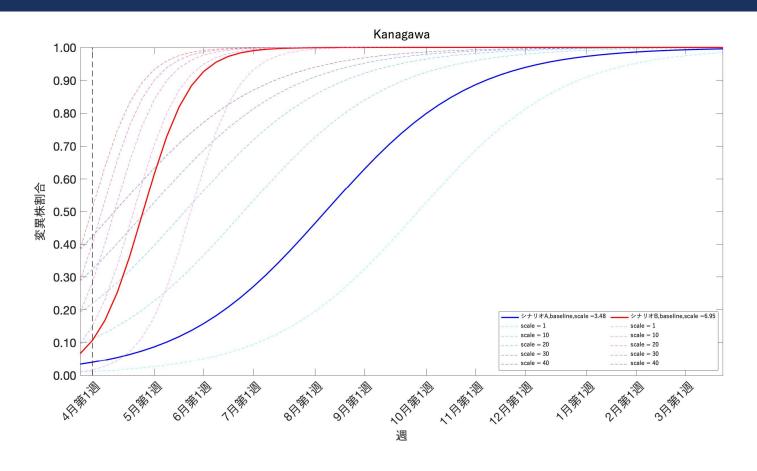
https://Covid I 9 Output Japan.github.io/JP/

- 質問・分析のリクエスト等
 - dfujii@e.u-tokyo.ac.jp
 - <u>taisuke.nakata@e.u-tokyo.ac.jp</u>

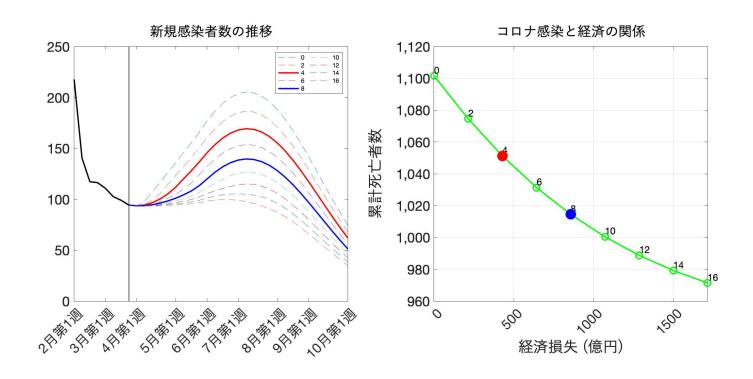
二つの変異株シナリオ

神奈川

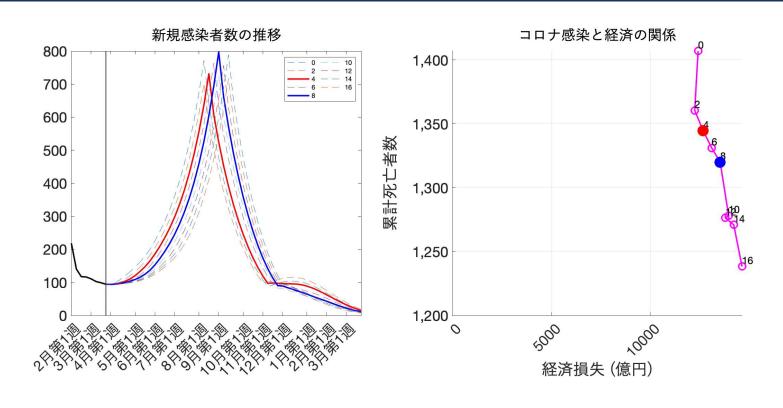
二つの変異株シナリオ:神奈川

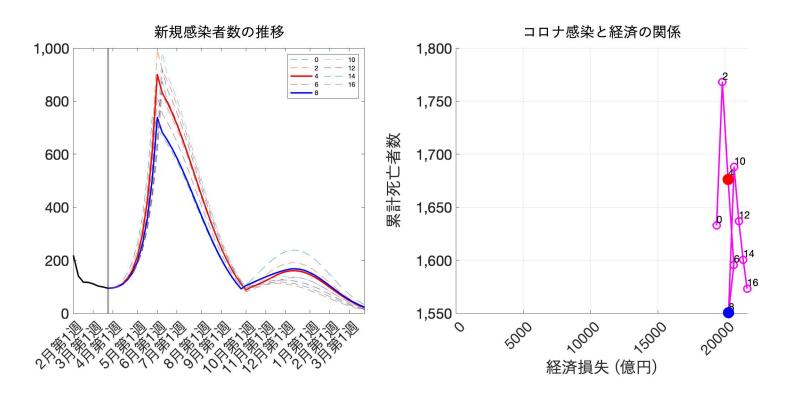

変異株シナリオ(A)

- 現在、変異株割合3.34% (=0.25/0.0719*0.961%= 0.25*[1/最近の検査率]*[直近3週間の変異株割合])
- Logistic回帰パラメター(β):0.17(アメリカのデータと整合的)
- 変異株の感染力:通常の1.5倍


変異株シナリオ(B)

- 現在、変異株割合6.68% (=0.5/0.0719*0.961%= 0.5* [1/最近の検査率]*[直近3週間の変異株割合])
- Logistic回帰パラメター (β): 0.52(イギリスのデータと整合的)
- 変異株の感染力:通常の1.5倍


二つの変異株シナリオ:神奈川

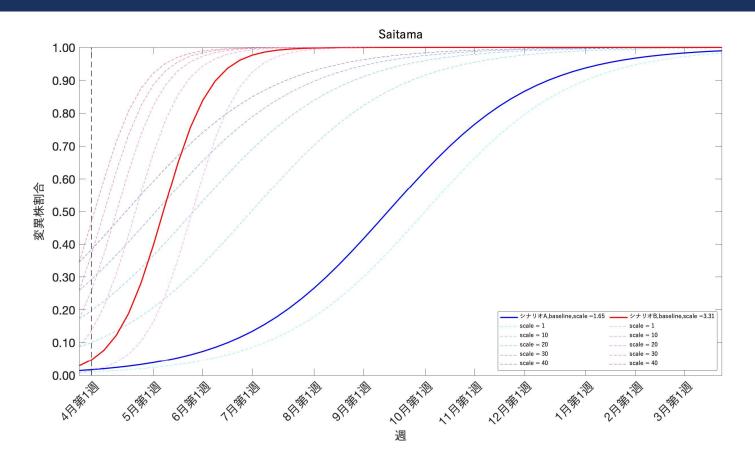

神奈川:基本シナリオ

神奈川:変異株シナリオ(A)

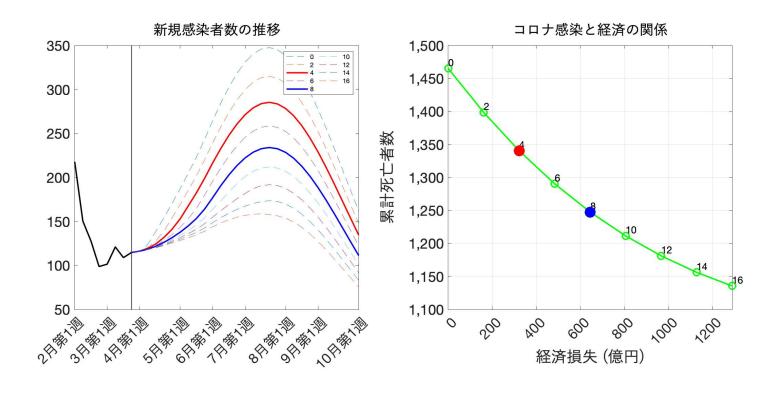
神奈川:変異株シナリオ(B)

埼玉

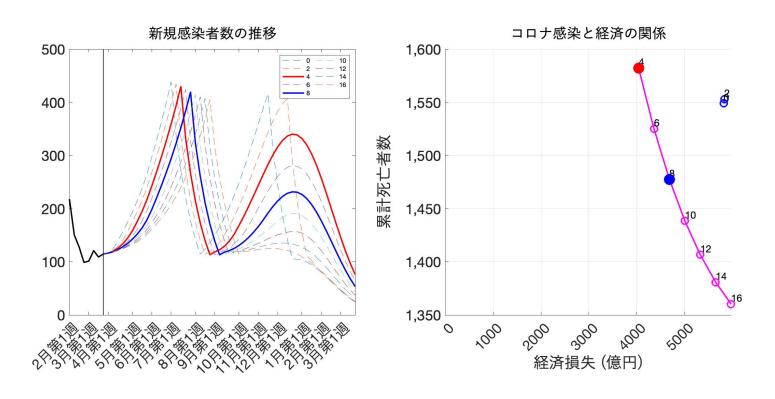
二つの変異株シナリオ:埼玉

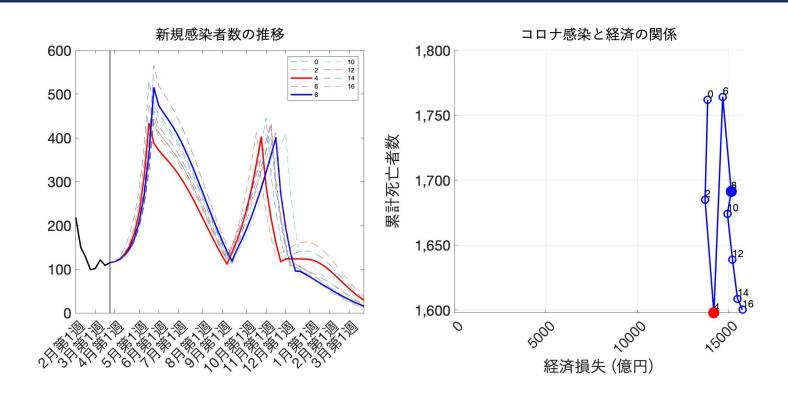

変異株シナリオ(A)

- 現在、変異株割合 I.43% (=0.25/0.151*0.862%= 0.25*[1/最近の検査率]*[直近3週間の変異株割合])
- Logistic回帰パラメター(β):0.17(アメリカのデータと整合的)
- 変異株の感染力:通常の1.5倍


変異株シナリオ(B)

- 現在、変異株割合2.85% (=0.5/0.151*0.862%= 0.5* [1/最近の検査率]*[直近3週間の変異株割合])
- Logistic回帰パラメター (β): 0.52(イギリスのデータと整合的)
- 変異株の感染力:通常の1.5倍


二つの変異株シナリオ:埼玉

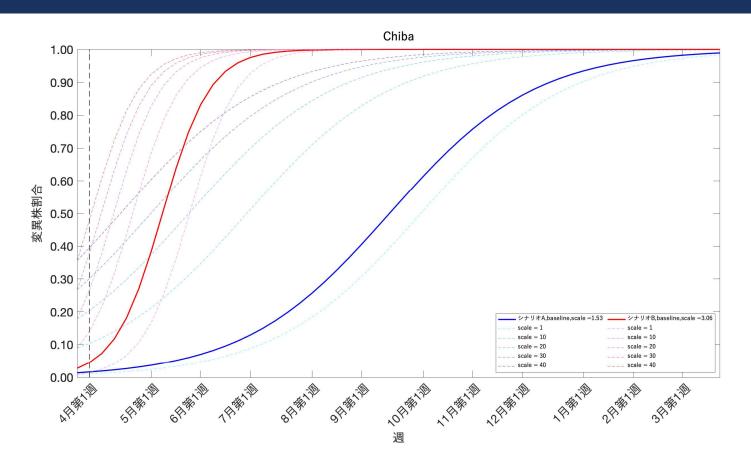

埼玉:基本シナリオ

埼玉: 変異株シナリオ(A)

埼玉:変異株シナリオ(B)

千葉

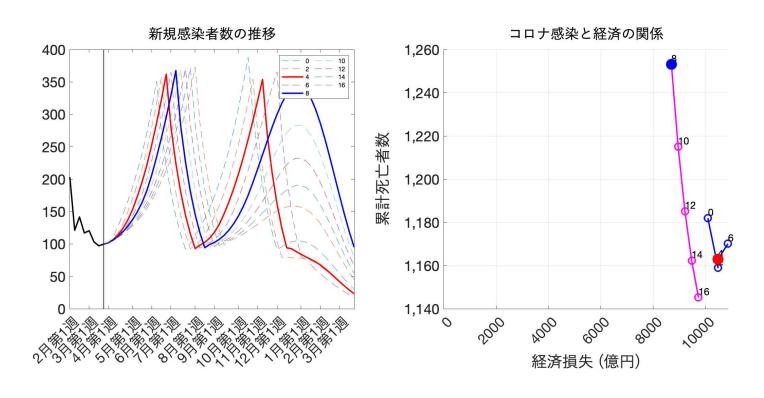
二つの変異株シナリオ:千葉

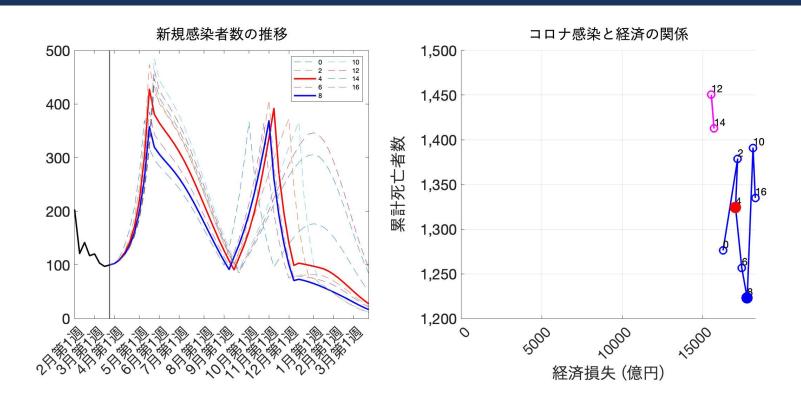

変異株シナリオ(A)

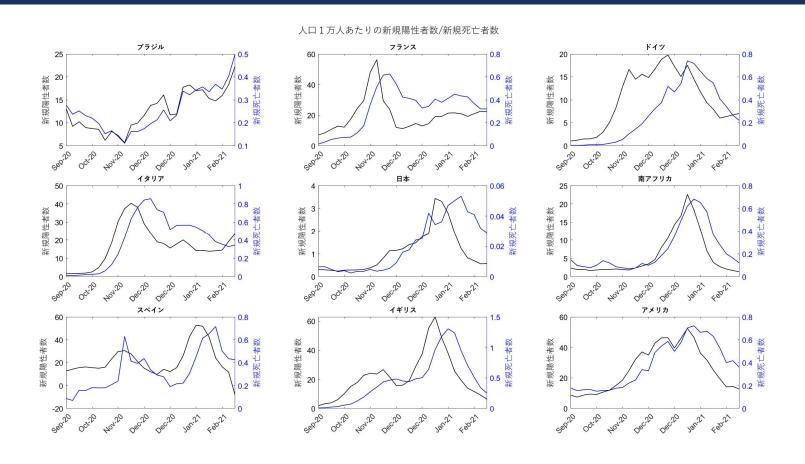
- 現在、変異株割合1.36% (=0.25/0.163*0.891%= 0.25*[1/最近の検査率]*[直近3週間の変異株割合])
- Logistic回帰パラメター(β):0.17(アメリカのデータと整合的)
- 変異株の感染力:通常の1.5倍

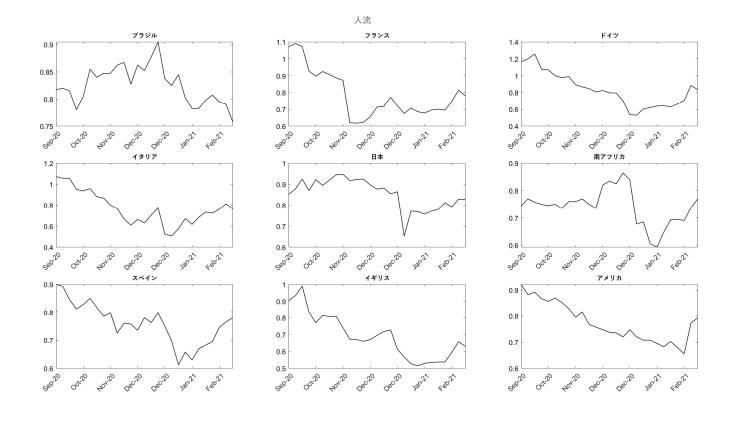
変異株シナリオ(B)

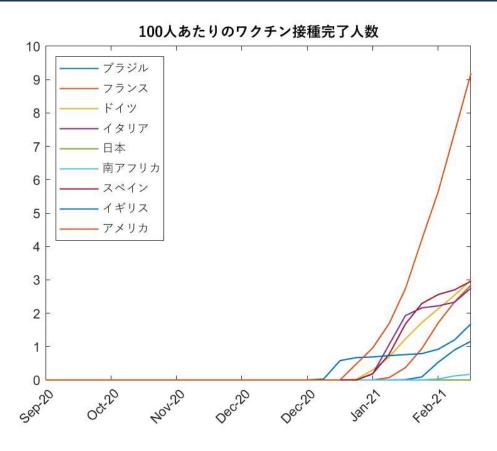
- 現在、変異株割合2.72% (=0.5/0.163*0.891%= 0.5* [1/最近の検査率]*[直近3週間の変異株割合])
- Logistic回帰パラメター (β): 0.52(イギリスのデータと整合的)
- 変異株の感染力:通常の1.5倍


二つの変異株シナリオ:千葉


千葉:基本シナリオ


千葉:変異株シナリオ(A)


千葉:変異株シナリオ(B)


新規感染者数•死亡者数(海外)

人流(海外)

ワクチン接種(海外)

